戻る     次へ     目次へ

5.3.3. 対応のないとき(クラスカル・ワリス検定).
3つ以上の標本の検定において,母集団における正規性・等分散性の仮定が困難であったり,データが離散量や順位尺度で測られているようなときには,
クラスカル・ワリス(Kruskal-Wallis)検定を適用すると良いでしょう.
多重比較での対標本間比較は「チューキーのHSD検定」を行えば良いでしょう.

[一般形式]

[検定の手順]
(1)検定の問題を明かにする.
「標本間の平均値に差があるか?」

(2)仮説の設定を行う. 注釈表示
帰無仮設(H0):μ1=μ2=・・・=μk
対立仮設(H1):μ1≠μ2≠・・・≠μk(両側検定のとき)

(3)危険率(100α%)を設定する.
両側検定の有意水準:α

検定統計量(H)を計算する.
多群のデータを,
      k =標本(水準)の数
      ni=各標本(水準)の数
      N =全データの個数
      Ri=各標本(水準)の順位和(i=1,2,・・・,k)
    

とするとき,データの符号化と順位変換のために,各標本(水準)のデータをひとまとめにし,表31 のような昇順順位系列を作ります.
注釈表示

表31 各標本での昇順順位系列
標本R1R2 ・・Rj ・・Rni
A1R11R12 ・・R1j ・・R1n1R1
A2R21R22 ・・R2j ・・R2n2R2
AiRi1Ri2 ・・Rij ・・RiniRi
AkRk1Rk2 ・・Rkj ・・RknkRk

Rijは各標本(水準)での順位です.ここで、

検定統計量(H)は,次式により求めます.
H= {12 /(N(N+1))}×狽qi^2/ni−3(N+1)

同一順位の多いときは検定統計量(Hc)を次のように補正します.
すべての順位系列内に同一順位のデータが何個あるか数えます.
t個のときTt=t^3−t,
の計算を同順位のすべてについて行い,その和T=狽stを求めます.

例えば順位2が3個のときTt=27−3=24,
順位5が2個のときT=4−2=2,そして,
その和 T(狽st)=24+2=26 から,

Hc=H/(1−T/(N^3−N))

が同一順位のあるときの補正値となります.

通常,同一順位の数が多くない限り,補正Hcを用いなくても検定への影響はあまりありません.
実際の要領は次の「例題27」を参考にして下さい.

[例題27]
気管支喘息患者の血清IgE「例題25」が順位データでランク分けされているとき,病態別IgE値は表32 のようになります.

表32 病態別のIgE値の順位
アトピー型混合型感染型
(A群)(B群)(C群)
14134
1072
1191
1563
8125

病態によってIgE値のランクがことなるか,どうかを検定します.

検定は次の順位系列表(表33)で行います.

表33 順位の平均と昇順順位系列
アトピーの型アトピー型混合型感染型
(A群)(B群)(C群)
順位数 861
1072
1193
14124
15135
順位和(Ri)584715
順位和の2乗(Ri^2)33642207225
Ri^2/n672.8441.845
順位の平均 11.69.43

(2)検定統計量(H)は次のようになります.
H= 12/(N(N+1))×狽qi^2/ni−3(N+1)
=12/(15×16)×1159.6−3×16=9.98

H=9.98>KAI^2(2,0.05)=5.991(両側検定,危険率 5%)

から,有意な差があると云えます.
すなわち,気管支喘息患者の血清IgEは,その病態によって異なると判断されます.

ここで,
同一順位のものが仮に次のようであったとしますと,
順位数3が3個,順位数8が3個,順位数13が3個
同一順位に対する補正を次の要領で行います。
順位数3に対して Tt=3^3-3=24
順位数8に対して Tt=3^3-3=24
順位数13に対して Tt=13^3-13=24
合計N=72

C=1-T/(N^3-N)=1−72/(15^3−15)=0.97857

(3)補正した検定統計量(Hc)は,次のようになります.
  Hc=H/C= 9.98/0.97857=10.1986

(4)多重比較について。
  各群間の対比較はノンパラメトリック検定のときも多重比較によって行います。
対象群と他群との2組の比較ではマンウィトニーの検定を用いても良いでしょう。
しかし、多重比較を行うのであれば「ライアン法」を選択してみて下さい。多重比較には色々な手法がありますので、問題に応じて適切な選択が求められます。
ここでは「ライアン法」による多重比較を示しておきます。

「ライアン法による多重比較」

「注釈」
  1. データ(X)を母集団での分布関数F(X−θ)からの標本とするとき,帰無仮説(H0):θ1=θ2=・・・=θkに対して行う検定である.
    もし対立仮説(H1)がθ1<θ2<・・・<θkのように, 一定の傾向が見られるとき,これを「傾向のある対立仮説」と云い,ヨンヒール(Jonckheere)検定を適用しなければならない.
    本書ではこの検定を割愛したので他書を参考にされたい.
  2. 各標本(水準)データの順位変換においてデータに同じ順位のものがあるとき,順位の平均をそのデータの順位とする.
    要領は「5.2. 2標本の検定と推定の仕方」でのノンパラメトリック検定と同じである.
戻る     次へ      目次へ     TOPへ